Search results for "dispersion interaction"
showing 9 items of 9 documents
Reply to "Comment on 'Dispersion Interaction between Two Hydrogen Atoms in a Static Electric Field' "
2020
In their Comment on our Letter Dispersion Interaction between Two Hydrogen Atoms in a Static Electric Field, P. P. Abrantes et al. address one of the main points discussed in our Letter, that is, the possibility to manipulate interatomic interactions through an external static electric field. In our Letter, we have shown that the interaction between two ground-state atoms can be significantly modified, exploiting an external static electric field, and even turned from attractive to repulsive, depending on the strength of the external field and the geometrical configu- ration. In their Comment, Abrantes et al. point out that it is the electrostatic contribution between the electric dipoles i…
Carbon nanorings: A challenge to theoretical chemistry
2006
High-level quantum-chemical methods show that the binding in the inclusion complex of hexamethylbenzene (HMB) in 6-cycloparaphenilacetylene (6-CPPA) cannot be explained only in terms of electrostatic interactions - caused by the polarization associated to curved Ï-conjugated systems - and the inclusion of dispersion forces is definitely needed. The theoretical description of van der Waals interactions is notoriously complicated and in fact some DFT methods cannot even predict the existence of the relatively small supramolecular nanoring studied here. However, ab initio MP2 calculations agree with experimental data and show that, in the considered complex, the HMB fragment is placed at the …
Casimir-Polder interatomic potential between two atoms at finite temperature and in the presence of boundary conditions
2007
We evaluate the Casimir-Polder potential between two atoms in the presence of an infinite perfectly conducting plate and at nonzero temperature. In order to calculate the potential, we use a method based on equal-time spatial correlations of the electric field, already used to evaluate the effect of boundary conditions on interatomic potentials. This method gives also a transparent physical picture of the role of a finite temperature and boundary conditions on the Casimir-Polder potential. We obtain an analytical expression of the potential both in the near and far zones, and consider several limiting cases of interest, according to the values of the parameters involved, such as atom-atom d…
Dynamical Casimir-Polder force between an excited atom and a conducting wall
2016
We consider the dynamical atom-surface Casimir-Polder force in the non-equilibrium configuration of an atom near a perfectly conducting wall, initially prepared in an excited state with the field in its vacuum state. We evaluate the time-dependent Casimir-Polder force on the atom, and find that it shows an oscillatory behavior from attractive to repulsive both in time and in space. We also investigate the asymptotic behavior in time of the dynamical force and of related local field quantities, showing that the static value of the force, as obtained by a time-independent approach, is recovered for times much larger than the timescale of the atomic self-dressing, but smaller than the atomic d…
Dispersion Interactions between Neutral Atoms and the Quantum Electrodynamical Vacuum
2018
Dispersion interactions are long-range interactions between neutral ground-state atoms or molecules, or polarizable bodies in general, due to their common interaction with the quantum electromagnetic field. They arise from the exchange of virtual photons between the atoms, and, in the case of three or more atoms, are not additive. In this review, after having introduced the relevant coupling schemes and effective Hamiltonians, as well as properties of the vacuum fluctuations, we~outline the main properties of dispersion interactions, both in the nonretarded (van der Waals) and retarded (Casimir--Polder) regime. We then discuss their deep relation with the existence of the vacuum fluctuation…
Van der Waals and resonance interactions between accelerated atoms in vacuum and the Unruh effect
2017
We discuss different physical effects related to the uniform acceleration of atoms in vacuum, in the framework of quantum electrodynamics. We first investigate the van der Waals/Casimir-Polder dispersion and resonance interactions between two uniformly accelerated atoms in vacuum. We show that the atomic acceleration significantly affects the van der Waals force, yielding a different scaling of the interaction with the interatomic distance and an explicit time dependence of the interaction energy. We argue how these results could allow for an indirect detection of the Unruh effect through dispersion interactions between atoms. We then consider the resonance interaction between two accelerat…
Effective Hamiltonians in Nonrelativistic Quantum Electrodynamics
2021
In this paper, we consider some second-order effective Hamiltonians describing the interaction of the quantum electromagnetic field with atoms or molecules in the nonrelativistic limit. Our procedure is valid only for off-energy-shell processes, specifically virtual processes such as those relevant for ground-state energy shifts and dispersion van der Waals and Casimir-Polder interactions, while on-energy-shell processes are excluded. These effective Hamiltonians allow for a considerable simplification of the calculation of radiative energy shifts, dispersion, and Casimir-Polder interactions, including in the presence of boundary conditions. They can also provide clear physical insights int…
Dispersion Interaction between Two Hydrogen Atoms in a Static Electric Field
2019
We consider the dispersion interaction between two ground-state hydrogen atoms, interacting with the quantum electromagnetic field in the vacuum state, in the presence of an external static electric field, both in the nonretarded and in the retarded Casimir-Polder regime. We show that the presence of the external field strongly modifies the dispersion interaction between the atoms, changing its space dependence. Moreover, we find that, for specific geometrical configurations of the two atoms with respect to the external field and/or the relative orientation of the fields acting on the two atoms, it is possible to change the character of the dispersion force, turning it from attractive to re…
From small to medium and beyond: a pragmatic approach in predicting properties of Ne containing structures
2013
In this study, we outlined a pragmatic approach for structural studies leading to better understanding of polycarbon structures using 21Ne as a nuclear magnetic resonance (NMR) probe. 21Ne NMR parameters of a single neon atom and its dimer were predicted at the CCSD(T) level in combination with large basis sets. At a lower level of theory, an interaction of neon atom with 1,3-cyclopentadiene ring and with five- and six-membered rings in carbazole was studied using the restricted Hartree–Fock (RHF) and density functional theory (DFT) combined with smaller basis sets. The RHF and DFT modelling of neon interaction with nanosized objects were performed on cyclacenes and selected fullerenes.